基于多模态MRI中深层语义和边缘信息融合的脑肿瘤分割 | 文献速递-深度学习肿瘤自动分割

本文主要是介绍基于多模态MRI中深层语义和边缘信息融合的脑肿瘤分割 | 文献速递-深度学习肿瘤自动分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Title

题目

Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI

基于多模态MRI中深层语义和边缘信息融合的脑肿瘤分割

01

文献速递介绍

医学图像分割是医学图像处理领域的重要课题。其中,脑肿瘤分割旨在从图像中定位多种类型的肿瘤区域,对临床实践具有重要意义。由于磁共振成像(MRI)在提供软组织高分辨率解剖结构方面的良好能力,它在诊断和治疗脑肿瘤疾病中被广泛应用。为了获得准确分割所需的全面信息,通常需要在脑肿瘤分割中使用具有不同成像参数的多模态MRI扫描。常用的模态包括液体衰减反转恢复(FLAIR)、T1加权(T1)、对比增强T1加权(T1ce)和T2加权(T2)。不同模态的图像捕获了不同的病理信息,并且它们可以有效地相互补充,这在分割多种类型的脑肿瘤区域(如水肿(ED)、坏死和非增强肿瘤(NCR/NET)以及增强肿瘤(ET))中起着至关重要的作用。图1展示了用于脑肿瘤分割的多模态MRI的示例。为简单起见,只选择了整个扫描的一个切片。图1(a)显示了领域专家提供的地面真相(GT)分割标签。绿色、黄色和红色分别表示ED、ET和NCR/NET区域。从图1(b)到(e)可以看出,不同模态的特征差异显著。例如,FLAIR模态可以很好地捕获具有明显边缘或边界的ED区域,而T1ce模态在检测具有高对比度的肿瘤核心(即ET和NRC/NET的联合)方面更为有效。

Abstract

摘要

Brain tumor segmentation in multimodal MRI has great significance in clinical diagnosis and treatment. Theutilization of multimodal information plays a crucial role in brain tumor segmentation. However, most existingmethods focus on the extraction and selection of deep semantic features, while ignoring some features withspecific meaning and importance to the segmentation problem. In this paper, we propose a brain tumorsegmentation method based on the fusion of deep semantics and edge information in multimodal MRI, aimingto achieve a more sufficient utilization of multimodal information for accurate segmentation. The proposedmethod mainly consists of a semantic segmentation module, an edge detection module and a feature fusionmodule. In the semantic segmentation module, the Swin Transformer is adopted to extract semantic featuresand a shifted patch tokenization strategy is introduced for better training. The edge detection module isdesigned based on convolutional neural networks (CNNs) and an edge spatial attention block (ESAB) ispresented for feature enhancement. The feature fusion module aims to fuse the extracted semantic and edgefeatures, and we design a multi-feature inference block (MFIB) based on graph convolution to perform featurereasoning and information dissemination for effective feature fusion. The proposed method is validated on thepopular BraTS benchmarks. The experimental results verify that the proposed method outperforms a numberof state-of-the-art brain tumor segmentation methods.

多模态MRI中的脑肿瘤分割在临床诊断和治疗中具有重要意义。利用多模态信息在脑肿瘤分割中起着至关重要的作用。然而,大多数现有方法都专注于提取和选择深度语义特征,而忽视了一些具有特定意义和重要性的特征,这些特征对于分割问题至关重要。在本文中,我们提出了一种基于多模态MRI中深层语义和边缘信息融合的脑肿瘤分割方法,旨在更充分地利用多模态信息进行准确的分割。所提出的方法主要由语义分割模块、边缘检测模块和特征融合模块组成。在语义分割模块中,采用Swin Transformer来提取语义特征,并引入了一种移位块标记策略以进行更好的训练。边缘检测模块基于卷积神经网络(CNNs)设计,并提出了边缘空间注意力块(ESAB)以进行特征增强。特征融合模块旨在融合提取的语义和边缘特征,我们设计了基于图卷积的多特征推理块(MFIB)来进行特征推理和信息传播,以实现有效的特征融合。所提出的方法在流行的BraTS基准数据集上进行了验证。实验结果验证了所提出的方法优于许多最新的脑肿瘤分割方法。

Method

方法

The framework of the proposed brain tumor segmentation methodis shown in Fig. 2. It is mainly composed of a semantic segmentationmodule, an edge detection module and a feature fusion module. The semantic module adopts an improved Swin Transformer block to extractdeep semantic features from multimodal MRI scans including FLAIR,T1, T1ce and T2. The edge detection module aims to extract edgefeatures by employing a convolutional network as the backbone anddesigning edge spatial attention blocks (ESABs) for feature enhancement. Considering the modal characteristics of MRI modalities, onlyFLAIR and T1ce are selected as the input of the edge detection module.The feature fusion module consists of several multi-feature inferenceblocks (MFIBs), aiming to fuse the semantic features obtained from thesemantic segmentation module and the edge features obtained fromthe edge module at multiple levels. To reconstruct the segmentationresult, a successive expanding decoder that is widely adopted in theU-Net-like architectures is employed. For the edge detection task, theresult is directly obtained by bilinear interpolation. For the featurefusion model, the output includes both an edge detection result and asegmentation result. To train the network, the semantic segmentationmodule and edge detection module are first trained individually. Then,the output of the feature fusion module is used to supervise the trainingof the entire model.

所提出的脑肿瘤分割方法的框架如图2所示。它主要由语义分割模块、边缘检测模块和特征融合模块组成。语义模块采用改进的Swin Transformer模块从包括FLAIR、T1、T1ce和T2在内的多模态MRI扫描中提取深层语义特征。边缘检测模块旨在通过使用卷积网络作为骨干,并设计边缘空间注意力块(ESABs)来增强特征,从而提取边缘特征。考虑到MRI模态的特征,仅选择FLAIR和T1ce作为边缘检测模块的输入。特征融合模块由多个多特征推理块(MFIBs)组成,旨在在多个级别上融合从语义分割模块获得的语义特征和从边缘模块获得的边缘特征。为了重建分割结果,采用了在U-Net类似的架构中广泛采用的连续扩展解码器。对于边缘检测任务,结果直接通过双线性插值获得。对于特征融合模型,输出包括边缘检测结果和分割结果。为了训练网络,首先单独训练语义分割模块和边缘检测模块。然后,特征融合模块的输出用于监督整个模型的训练。

Conclusion

结论

This paper proposes a novel deep learning-based brain tumor segmentation method by jointly utilizing deep semantics and edge information in multimodal MRI. To achieve this target, three functionalmodules are designed. Specifically, we present a semantic segmentationmodule based on an improved Swin Transformer by introducing theshifted patch tokenization strategy for better training. In addition, aCNN-based edge detection module is designed to extract edge features from the input MRI scans. Finally, we present a feature fusionmodule by designing a multi-feature inference block based on graphconvolution to fuse the deep semantic edges and specific edge features.Experimental results demonstrate the effectiveness of the key components designed in our method. Moreover, the proposed method achievesbetter performance when compared with some state-of-the-art methodson the BraTS benchmarks. Future work may focus on exploring thefeasibility of some other specific features for brain tumor segmentationand extending the proposed approach to other semantic segmentationproblems.

这篇论文提出了一种新颖的基于深度学习的脑肿瘤分割方法,通过联合利用多模态MRI中的深度语义和边缘信息来实现。为了实现这一目标,设计了三个功能模块。具体来说,我们提出了一个基于改进的Swin Transformer的语义分割模块,通过引入移位块标记策略来实现更好的训练。此外,设计了一个基于CNN的边缘检测模块,用于从输入的MRI扫描中提取边缘特征。最后,我们设计了一个基于图卷积的多特征推理块的特征融合模块,用于融合深度语义边缘和特定边缘特征。实验结果证明了我们方法中设计的关键组件的有效性。此外,与一些最新方法相比,所提出的方法在BraTS基准数据集上取得了更好的性能。未来的工作可能集中在探索其他特定特征对于脑肿瘤分割的可行性,并将所提出的方法扩展到其他语义分割问题上。

Figure

图片

Fig. 1. An example of multimodal MRI for brain tumor segmentation. (a) The ground truth (GT) segmentation label provided by domain experts (the green, yellow and redrepresent edema (ED), enhancing tumor (ET), and necrosis and non-enhancing tumor (NCR/NET), respectively). (b) The FLAIR modality. (c) The T1 modality. (d) The T1cemodality. (e) The T2 modality. (For interpretation of the references to color in this figure legend, 

图1. 用于脑肿瘤分割的多模态MRI示例。(a)领域专家提供的地面真实(GT)分割标签(绿色、黄色和红色分别表示水肿(ED)、增强肿瘤(ET)和坏死和非增强肿瘤(NCR/NET))。(b)FLAIR模态。(c)T1模态。(d)T1ce模态。(e)T2模态。

图片

Fig. 2. The framework of the proposed brain tumor segmentation method. It mainly consists of three modules: a semantic segmentation module, an edge detection module and afeature fusion module.

图2. 所提出的脑肿瘤分割方法的框架。它主要由三个模块组成:语义分割模块、边缘检测模块和特征融合模块。

图片

Fig. 3. The architecture of a Swin Transformer block with the shifted patch tokenization strategy. Both W-MSA and SW-MSA are multi-head attention, which represent the regularwindow and the shifted window, respectively.

图3. 具有移位块标记策略的Swin Transformer块的架构。W-MSA和SW-MSA均为多头注意力,分别代表常规窗口和移位窗口。

图片

Fig. 4. The architecture of the edge spatial attention block (ESAB) designed for edge feature enhancement.

图4. 为边缘特征增强设计的边缘空间注意力块(ESAB)的架构。

图片

Fig. 5. The architecture of the multi-feature inference block (MFIB) for feature fusion. (a) The whole architecture of the 𝑖th MFIB. (b) The specific structure of graph convolution.

图5. 用于特征融合的多特征推理块(MFIB)的架构。(a) 第i个MFIB的整体架构。(b) 图卷积的具体结构。

图片

Fig. 6. Performance comparison of different brain tumor segmentation methods on the metric Dice. The best-performed method in each case is marked by a star.

图6. 不同脑肿瘤分割方法在Dice指标上的性能比较。在每种情况下表现最佳的方法用星号标记。

图片

Fig. 7. Performance comparison of different brain tumor segmentation methods on the metric HD. The best-performed method in each case is marked by a star.

图7. 不同脑肿瘤分割方法在HD指标上的性能比较。在每种情况下表现最佳的方法用星号标记。

图片

Fig. 8. Visual effect comparison of brain tumor segmentation results obtained by different methods. The green, yellow and red indicate ED, ET and NCR/NET regions, respectively.

图8. 使用不同方法获得的脑肿瘤分割结果的视觉效果比较。绿色、黄色和红色分别表示水肿(ED)、增强肿瘤(ET)和坏死和非增强肿瘤(NCR/NET)区域。

图片

Fig. 9. Performance comparison of different segmentation methods in terms of tumor boundary accuracy.

图9. 不同分割方法在肿瘤边界准确度方面的性能比较。

图片

Fig. 10. Visual effect comparison of segmentation results obtained by different models in the ablation study

图10. 使用消融研究中不同模型获得的分割结果的视觉效果比较

Table

图片

Table 1The segmentation performance of the proposed method using different values of the parameter 𝛾 in Eq. .

表1 使用方程中不同参数γ的提出方法的分割性能。

图片

Table 2A brief description of the methods used for performance comparison in our experiments.

表2 在我们的实验中用于性能比较的方法的简要描述。

图片

Table 3Objective evaluation results of different brain tumor segmentation methods on the BraTS2018 benchmark.

表3 不同脑肿瘤分割方法在BraTS2018基准数据集上的客观评估结果。

图片

Table 4Objective evaluation results of different brain tumor segmentation methods on the BraTS2019 benchmark

表4 不同脑肿瘤分割方法在BraTS2019基准数据集上的客观评估结果。

图片

Table 5Objective evaluation results of different brain tumor segmentation methods on the BraTS2020 benchmark.

表5 不同脑肿瘤分割方法在BraTS2020基准数据集上的客观评估结果。

图片

Table 6Objective evaluation results for the ablation study on the BraTS2018 benchmark

表6对BraTS2018基准数据集进行消融研究的客观评估结果

这篇关于基于多模态MRI中深层语义和边缘信息融合的脑肿瘤分割 | 文献速递-深度学习肿瘤自动分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000673

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.