Function Calling 介绍与实战

2024-05-25 04:52
文章标签 实战 介绍 function calling

本文主要是介绍Function Calling 介绍与实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

functions 是 Chat Completion API 中的可选参数,用于提供函数定义。其目的是使 GPT 模型能够生成符合所提供定义的函数参数。请注意,API不会实际执行任何函数调用。开发人员需要使用GPT 模型输出来执行函数调用。

如果提供了functions参数,默认情况下,GPT 模型将决定在何时适当地使用其中一个函数。

可以通过将function_call参数设置为{"name": "<insert-function-name>"}来强制 API 使用指定函数。

同时,也支持通过将function_call参数设置为"none"来强制API不使用任何函数。

如果使用了某个函数,则响应中的输出将包含"finish_reason": "function_call",以及一个具有该函数名称和生成的函数参数的function_call对象。

functions 参数使用方法

安装依赖
复制代码
pip install scipy tenacity tiktoken termcolor openai requests
javascript
复制代码
import json
import requests
import os
from tenacity import retry, wait_random_exponential, stop_after_attempt
from termcolor import coloredGPT_MODEL = "gpt-3.5-turbo"
定义工具函数
ini
复制代码
# 第一个字典定义了一个名为"get_current_weather"的功能
functions = [{"name": "get_current_weather",  # 功能的名称"description": "Get the current weather",  # 功能的描述"parameters": {  # 定义该功能需要的参数"type": "object","properties": {  # 参数的属性"location": {  # 地点参数"type": "string",  # 参数类型为字符串"description": "The city and state, e.g. San Francisco, CA",  # 参数的描述},"format": {  # 温度单位参数"type": "string",  # 参数类型为字符串"enum": ["celsius", "fahrenheit"],  # 参数的取值范围"description": "The temperature unit to use. Infer this from the users location.",  # 参数的描述},},"required": ["location", "format"],  # 该功能需要的必要参数},},# 第二个字典定义了一个名为"get_n_day_weather_forecast"的功能{"name": "get_n_day_weather_forecast",  # 功能的名称"description": "Get an N-day weather forecast",  # 功能的描述"parameters": {  # 定义该功能需要的参数"type": "object","properties": {  # 参数的属性"location": {  # 地点参数"type": "string",  # 参数类型为字符串"description": "The city and state, e.g. San Francisco, CA",  # 参数的描述},"format": {  # 温度单位参数"type": "string",  # 参数类型为字符串"enum": ["celsius", "fahrenheit"],  # 参数的取值范围"description": "The temperature unit to use. Infer this from the users location.",  # 参数的描述},"num_days": {  # 预测天数参数"type": "integer",  # 参数类型为整数"description": "The number of days to forecast",  # 参数的描述}},"required": ["location", "format", "num_days"]  # 该功能需要的必要参数},},
]
定义函数chat_completion_request
python
复制代码
# 定义一个函数chat_completion_request,主要用于发送 聊天补全 请求到OpenAI服务器def chat_completion_request(messages, functions=None, function_call=None, model=GPT_MODEL):# 设定请求的header信息,包括 API_KEYheaders = {"Content-Type": "application/json","Authorization": "Bearer " + os.getenv("OPENAI_API_KEY"),}# 设定请求的JSON数据,包括GPT 模型名和要进行补全的消息json_data = {"model": model, "messages": messages}# 如果传入了functions,将其加入到json_data中if functions is not None:json_data.update({"functions": functions})# 如果传入了function_call,将其加入到json_data中if function_call is not None:json_data.update({"function_call": function_call})# 尝试发送POST请求到OpenAI服务器的chat/completions接口try:response = requests.post("https://api.openai.com/v1/chat/completions",headers=headers,json=json_data,)# 返回服务器的响应return response# 如果发送请求或处理响应时出现异常,打印异常信息并返回except Exception as e:print("Unable to generate ChatCompletion response")print(f"Exception: {e}")return e
执行调用
makefile
复制代码
# 定义一个空列表messages,用于存储聊天的内容
messages = []# 使用append方法向messages列表添加一条系统角色的消息
messages.append({"role": "system",  # 消息的角色是"system""content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous."  # 消息的内容
})# 向messages列表添加一条用户角色的消息
messages.append({"role": "user",  # 消息的角色是"user""content": "What's the weather like today"  # 用户询问今天的天气情况
})# 使用定义的chat_completion_request函数发起一个请求,传入messages和functions作为参数
chat_response = chat_completion_request(messages, functions=functions
)# 解析返回的JSON数据,获取助手的回复消息
assistant_message = chat_response.json()["choices"][0]["message"]# 将助手的回复消息添加到messages列表中
messages.append(assistant_message)pretty_print_conversation(messages)

这段代码首先定义了一个messages列表用来存储聊天的消息,然后向列表中添加了系统和用户的消息。

然后,它使用了之前定义的chat_completion_request函数发送一个请求,传入的参数包括消息列表和函数列表。

在接收到响应后,它从JSON响应中解析出助手的消息,并将其添加到消息列表中

如何使用 functions 参数

这段代码定义了两个可以在程序中调用的函数,分别是获取当前天气和获取未来N天的天气预报。

每个函数(function)都有其名称、描述和需要的参数(包括参数的类型、描述等信息)。

image.png

总结

调用 api.openai.com/v1/chat/com… 时 传递functions参数时

completion 模型返回的结果中会通过function_call参数 提示你调用哪个函数

流程

  • 定义好function函数
  • 调用大模型 大模型返回结果 告诉你调用哪个函数 包括具体的参数值
  • 调用函数 获取结果
  • 将结果查询的结果放到message队列中 重新传给大模型

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

这篇关于Function Calling 介绍与实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1000531

相关文章

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

redis过期key的删除策略介绍

《redis过期key的删除策略介绍》:本文主要介绍redis过期key的删除策略,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录第一种策略:被动删除第二种策略:定期删除第三种策略:强制删除关于big key的清理UNLINK命令FLUSHALL/FLUSHDB命

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语