R语言多元线性回归、ARIMA分析美国不同候选人对经济GDP时间序列影响

本文主要是介绍R语言多元线性回归、ARIMA分析美国不同候选人对经济GDP时间序列影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:Yuanchang Luo

近段时间,美国总统大选引起了世界各国的关注。共和党候选人唐纳德·特朗普和民主党候选人乔·拜登将角逐总统。两党候选人在金融贸易、经济金融治理以及防控措施等重点发展领域有着不同的政治立场和施政纲领。不同的政治立场的候选人对美国甚至全世界的经济发展有着一定的影响,本文结合具体数据,定量分析不同候选人对美国经济发展的影响。

解决方案

任务/目标

根据美国各指标数据以及两位候选人的不同 政策,分析出对美国经济的影响。

数据源准备

在美国政府公开数据集上搜索数据,共 26 类, 并且用 GDP 来反映美国经济。得到数据后, 由于是时间序列数据,因此通过拉格朗日插值 法补充空值。并且,由于是美国政府公开的数 据集,因此默认异常值,即较大较小值是由实 际历史因素导致的,不作处理。

特征抽取

首先经过观察特征间的相关矩阵以及和因变量的相 关性,初步剔除 7 个与因变量相关性非常低且指标 间相关性较高的指标,使用剩余19个自变量作为 回归分析的指标。(剔除掉的指标:'美国个人收入 中位数','个人所得税(最高)','个人所得税(最低) ','商品和服务出口','金融资产净收购','劳动力市场状 况指数','失业率')

建模

多元线性回归,一般应用与多个特征指标的回 归问题。 在多元线性回归的过程中,除了考虑模型的 AIC 最小外,还需考虑模型间自变量相互的关 系对因变量的影响,即多重共线性,通过 VIF 来剔除相关自变量。 ARIMA,一般应用在时间序列领域上。 ARIMA 模型是指将非平稳时间序列转化为平 稳时间序列,然后将结果变量做自回归(AR) 和自平移(MA)。

模型优化

1.通过 VIF 准则剔除相关的自变量:

上图为 VIF 最初结果和最终结果。进一步筛选 7 个指标进行预测。

2.通过 AIC 准则选择最优模型

结合各因素的 t 检验以及模型的 AIC,通过向 前向后选择的方法,选择出最优的回归模型。

结合上图,确信此回归模型表现良好。

3.时间序列预测自变量

由于美国政府公开的数据截至到 19 年,而我 们需要 21 年 1 月份自变量的数据以次来预测 不同候选人当选对经济的影响,因此通过时间 序列对 5 个指标往后预测 5 季度的数值。

4.不同政策对特征的定量影响

结合不同候选人的政策,可以人为定性的分析 出对各特征的影响是增大还是减小,然后通过 平均 20 年的数据,算出各特征增大以及减小 的百分比均值,以此来估计影响的具体数值。 这样一来,对历史数据通过 ARIMA 模型得到 20 年的的数据,然后通过各候选人的不同政 策对指标的影响以及历史变动均值,就得到了 21 年四个季度各指标的具体数值,然后通过 多元回归所得方程,预测 21 年 4 个季度的 GDP 具体数值。

项目结果 

多元回归方程:y= − 0.3478 − 0.08548x 2+1.579 × 10 −7 x 10 +4.653 × 10 −5 x 14+1.565 × 10 −5 x15+1.156x 19

结合对各指标的预测值,计算出不同候选人当 选对经济的影响:

可以看到,两位候选人的当选都会对美国经济有一定的提升,但拜登的当选无疑提升更大, 因此可以估计,拜登有更大的可能赢得此次大 选。评估效果不能只看经济影响,要综合考虑, 需要参考不同候选人的具体政策带来的影响, 以及不同党派不同群体对两位候选人的不同 态度。因此预测结果仅作为参考。

关于作者

在此对Yuanchang Luo对本文所作的贡献表示诚挚感谢,他在西北大学完成了应用统计硕士学位,专长数据挖掘、数据分析、机器学习等。


这篇关于R语言多元线性回归、ARIMA分析美国不同候选人对经济GDP时间序列影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/319492

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块