新版Matlab中神经网络训练函数Newff的使用方法

2024-06-11 18:32

本文主要是介绍新版Matlab中神经网络训练函数Newff的使用方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载自

新版Matlab中神经网络训练函数Newff的使用方法

一、   介绍新版newff

Syntax

·         net = newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF)

Description

 

newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) takes several arguments

P

R x Q1 matrix of Q1 sample R-element input vectors

T

SN x Q2 matrix of Q2 sample SN-element target vectors

Si

Size of ith layer, for N-1 layers, default = [ ].
(Output layer size SN is determined from T.)

TFi

Transfer function of ith layer. (Default = 'tansig' for
hidden layers and 'purelin' for output layer.)

BTF

Backpropagation network training function (default = 'trainlm')

BLF

Backpropagation weight/bias learning function (default = 'learngdm')

IPF

Row cell array of input processing functions. (Default = {'fixunknowns','removeconstantrows','mapminmax'})

OPF

Row cell array of output processing functions. (Default = {'removeconstantrows','mapminmax'})

DDF

Data divison function (default = 'dividerand')

 

Examples

Here is a problem consisting of inputs P and targets T to be solved with a network.

·         P = [0 1 2 3 4 5 6 7 8 9 10];T = [0 1 2 3 4 3 2 1 2 3 4];

Here a network is created with one hidden layer of five neurons.

·         net = newff(P,T,5);

The network is simulated and its output plotted against the targets.

·         Y = sim(net,P);plot(P,T,P,Y,'o')

The network is trained for 50 epochs. Again the network's output is plotted.

·         net.trainParam.epochs = 50;net = train(net,P,T);Y = sim(net,P);plot(P,T,P,Y,'o')

二、   新版newff与旧版newff调用语法对比

Example1

比如输入input6*1000),输出output为(4*1000),那么

 

旧版定义:net=newff(minmax(input),[14,4],{'tansig','purelin'},'trainlm');

新版定义:net=newff(input,output,14,{'tansig','purelin'},'trainlm');

Example2

比如输入input6*1000),输出output为(4*1000),那么

 

旧版定义:net=newff(minmax(input),[49,14,4],{'tansig','tansig','tansig'},'traingdx');

新版定义:net=newff(input,output, [49,14], {'tansig','tansig','tansig'},'traingdx');

  

三、   旧版newff使用方法在新版本中使用

提示:旧版本定义的newff虽也能在新版本中使用,但会有警告,警告如下:

 

Warning: NEWFF used in an obsolete way.
> In obs_use at 18
  In newff>create_network at 127
  In newff at 102
          See help for NEWFF to update calls to the new argument list.

四、   新版newff与旧版newff使用的训练效果对比

     旧版本:旧用法训练次数多,但精度高  

新版本:新用法训练次数少,但精度可能达不到要求

造成上述原因是:

程序里面的权值、阈值的初始值是随机赋值的,所以每次运行的结果都会不一样,有好有坏。
你可以把预测效果不错的网络的权值和阈值作为初始值。
具体可以查看net.iw{1,1}net.lw{2,1}net.b{1}net.b{2}的值。

现在给一个完整的例子

 %% 清空环境变量

clc

clear

%% 训练数据预测数据

data=importdata('test.txt');

%1768间随机排序

k=rand(1,768);

[m,n]=sort(k);

 

%输入输出数据

input=data(:,1:8);

output =data(:,9); 

%随机提取500个样本为训练样本,268个样本为预测样本

input_train=input(n(1:500),:)';

output_train=output(n(1:500),:)';

input_test=input(n(501:768),:)';

output_test=output(n(501:768),:)'; 

%输入数据归一化

[inputn,inputps]=mapminmax(input_train); 

%% BP网络训练

% %初始化网络结构

net=newff(inputn,output_train,10); 

net.trainParam.epochs=1000;

net.trainParam.lr=0.1;

net.trainParam.goal=0.0000004;

%% 网络训练

net=train(net,inputn,output_train); 

%% BP网络预测

%预测数据归一化

inputn_test=mapminmax('apply',input_test,inputps); 

%网络预测输出

BPoutput=sim(net,inputn_test); 

%% 结果分析

%根据网络输出找出数据属于哪类

BPoutput(find(BPoutput<0.5))=0;

BPoutput(find(BPoutput>=0.5))=1; 

%% 结果分析

%画出预测种类和实际种类的分类图

figure(1)

plot(BPoutput,'og')

hold on

plot(output_test,'r*');

legend('预测类别','输出类别')

title('BP网络预测分类与实际类别比对','fontsize',12)

ylabel('类别标签','fontsize',12)

xlabel('样本数目','fontsize',12)

ylim([-0.5 1.5]) 

%预测正确率

rightnumber=0;

for i=1:size(output_test,2)

    if BPoutput(i)==output_test(i)

        rightnumber=rightnumber+1;

    end

end

rightratio=rightnumber/size(output_test,2)*100;

 

sprintf('测试准确率=%0.2f',rightratio)

这篇关于新版Matlab中神经网络训练函数Newff的使用方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1051951

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

LiteFlow轻量级工作流引擎使用示例详解

《LiteFlow轻量级工作流引擎使用示例详解》:本文主要介绍LiteFlow是一个灵活、简洁且轻量的工作流引擎,适合用于中小型项目和微服务架构中的流程编排,本文给大家介绍LiteFlow轻量级工... 目录1. LiteFlow 主要特点2. 工作流定义方式3. LiteFlow 流程示例4. LiteF

使用Python开发一个现代化屏幕取色器

《使用Python开发一个现代化屏幕取色器》在UI设计、网页开发等场景中,颜色拾取是高频需求,:本文主要介绍如何使用Python开发一个现代化屏幕取色器,有需要的小伙伴可以参考一下... 目录一、项目概述二、核心功能解析2.1 实时颜色追踪2.2 智能颜色显示三、效果展示四、实现步骤详解4.1 环境配置4.

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.